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1 Different ways of defining gene families
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Figure S1: Different ways of defining gene families. Figure A represents a species tree with two extant
species Sa and Sb. LCA(Sa, Sb) is the last common ancestor of species Sa and Sb, CA1(Sa, Sb) is a common
ancestor of Sa and Sb, and CA2(Sa, Sb) is another common ancestor of Sa and Sb that lived more recently
than CA1(Sa, Sb). Figure B represents a gene tree within the species tree. This gene tree is represented
in simple 3D schema for better visualisation. In a gene tree, squares represent duplication events, circles
represent speciation events and crosses represent deletion events. Figure C shows how the original gene tree
of figure B is pruned in order to define families that correspond to a unique gene of CA1(Sa, Sb). Figure D
shows how the original gene tree of figure B is pruned in order to define families that correspond to a unique
gene of CA2(Sa, Sb). Finally Figure E shows how the original gene tree of figure B is pruned in order to define
families that correspond to a unique gene of LCA(Sa, Sb). Figures show that the more recent is the ancestor
used for the pruning the more families.

2 From the MH to the MHP by rewriting chromosomes with tbs

Figure S2a is an example of a matrix of homologies. Along the X-axis and the Y-axis, arrows represent
oriented genes. This MH corresponds to a chromosome ca of 8 genes on the X-axis and a chromosome cb
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(b) Matrix of Homology Packs (MHP)

Figure S2: A matrix of homologies and the corresponding matrix of homology packs

of 8 genes on the Y-axis. Genes with the same colour are homologs except for grey genes which have no
homologies in the current MH but which have homologies in other pairwise comparisons of chromosomes.
Filled cells represent homologies. Homologies of the same colour belong to the same sb. The symbol in a
homology represents ga • gb, the sign of the homology, where ga and gb are the two homologous genes. For
convenience, a sign +1 is denoted + and a sign −1 is denoted −.

ca can be written [ga,k]k∈[1,8], where ga,1 is the leftmost gene of ca and ga,8 is the rightmost gene of ca.
Adjacent homologous genes are considered as tandem duplicates thus the second and third genes of ca, ga,2
and ga,3, are tandem duplicates. ga,2 has an orientation equal to −1 whereas ga,3 has an orientation equal to
+1. ca can be rewritten with 6 tbs, ca = [tba,k]k∈[1,6], where tba,1 is the leftmost tb and tba,6 is the rightmost
tb. Starting from the left, tba,2, the second tb of ca, has an unknown orientation, all the other tbs have an
orientation equal to +1.

In the MH, rectangles of non-0 values represent hps. In this example there are 4 hps. The first hp has
a size 2 × 1, the second hp has a size 1 × 1, the third hp has a size 2 × 3 and the last hp has a size 1 × 1.
tba,4 = ca[5→ 6] is in a homology relation with tbb,4 = cb[4→ 6]. Thus the corresponding hp is the submatrix
MH[5→ 6, 4→ 6]. This hp is said to have a size 2× 3, with 2 the size of tba,4 and 3 the size of tbb,4.

Figure S2b is the corresponding MHP of the MH of figure S2a after rewriting the chromosomes with tbs.
Along the X-axis and the Y-axis, arrows represent oriented tbs. The rectangle on the X-Axis represents a
tb with an unknown orientation. The values in the arrows are the sizes of each tbs. The symbol in a hp
represents tba • tbb, the sign of the hp, where tba and tbb are the two homologous tbs. For convenience, a sign
+1 is denoted + and a sign −1 is denoted − whereas an unknown sign is denoted ∅. The bottom-most and
left-most hp corresponds to a tb of size 2 (on the X-axis) with an unknown orientation in a homology relation
with a tb of size 1 with an orientation equal to +1 (on the Y-axis). Thus the sign of this hp is unknown, i.e.
equal to ∅. Going top and right, the third hp corresponds to a tb of size 2 (on the X-axis) in a homology
relation with a tb of size 3 (on the Y-axis). Both tbs have an orientation equal to +1. Thus the sign of the
corresponding hp is +1. All hps have a sign equal to +1 except for the first hp which has a sign equal to ∅.

3 Distance metric formulas

If (x0, y0) and (x1, y1) are the coordinates of two positions in the MHP, depending on the metric used, the
distances between these two positions are given by the formulas:

dCD((x0, y0), (x1, y1)) = max(|x1 − x0|, |y1 − y0|)

dED((x0, y0), (x1, y1)) =

[√
(x1 − x0)

2
+ (y1 − y0)

2

]
dMD((x0, y0), (x1, y1)) = |x1 − x0|+ |y1 − y0|
dDPD((x0, y0), (x1, y1)) = 2max(|x1 − x0|, |y1 − y0|)−min(|x1 − x0|, |y1 − y0|)
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Where [x] is the nearest integer of x. CD stands for Chebyshev Distance metric, ED for Euclidean Distance
metric, MD stands for Manhattan Distance metric and DPD stands for Diagonal Pseudo Distance metric. It
is easy to construct figure S3 with these formulas.
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(a) Chebyshev Distance (CD)
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(b) Euclidean Distance (ED)
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(c) Manhattan Distance (MD)
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(d) Diagonal Pseudo Distance (DPD)

Figure S3: Distance metrics available in PhylDiag. Distance values are computed from the black dot.
The warmer the colour, the closer the point from the black dot.

4 Strict consistent diagonals are putative strict synteny blocks

We will demonstrate that extracting putative strict sbs (containing no gaps between tbs) of ca and cb is
equivalent to extracting strict and consistent diagonals of hps in the related MHP. Let [gi]i∈[s,s+l−1] be an
uninterrupted ancestral sequence of l tbs in LCA(Sa, Sb), each tb is a unique gene. If this sequence of tbs is
a strict sb, the ancestral sequence remains an uninterrupted sequence of tbs up to the two compared species,
furthermore, within the sb, tbs order is conserved and tbs orientations either remain conserved or change
from a known to an unknown orientation. Therefore the sb is present in a chromosome ca of Sa and is also
present in a chromosome cb of Sb. Without loss of generality, we arbitrarily choose the reference order of the
tbs of the sb to be the same as in ca, so gs+kHtba,sa+k ∀k ∈ [0, l − 1]. Depending on the choice of the order
of the tbs in cb, the order of the syntenic tbs in cb may thus be in the same order as the syntenic tbs in ca,
or in the reverse order. Thus two cases must be treated (cf figure S4):

• The order of the syntenic tbs in cb is conserved in the same order as the syntenic tbs in ca so there is a
row [tba,i]i∈[sa,sa+l−1] in ca and a row [tbb,i]i∈[sb,sb+l−1] in cb that verify ∀k ∈ [0, l − 1]

gs+k = LCAg(tba,sa+k, tbb,sb+k)

so
tba,sa+k H tbb,sb+k

and
MHP[sa + k, sb + k] 6= 0.

This corresponds to a strict slash diagonal in the MHP.

Furthermore, when the tbs [gi]i∈[s,s+l−1] do not evolve from a known to an unknown orientation, the
tbs conserve their orientations within the sb, i.e. relatively to the choice of the order of tbs in the
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sb, from gs to gs+l−1. Therefore the orientation of tbb,sb+k relatively to
−−−−−−−−−−→
tbb,sbtbb,sb+l−1 is the same as

the orientations of tba,sa+k relatively to
−−−−−−−−−−−→
tba,satba,sa+l−1.

−−−−−−−−−−−→
tba,satba,sa+l−1 is the same orientation as the

reference orientation of ca and
−−−−−−−−−−→
tbb,sbtbb,sb+l−1 is the same orientation as the reference orientation of cb,

thus, when we consider the orientations of tbs on their respective chromosomes, ∀k ∈ [0, l − 1]

o(tba,sa+k) = o(tbb,sb+k) or ∅
o(tbb,sb+k) = o(tba,sa+k) or ∅,

so
tba,sa+k • tbb,sb+k = +1 or ∅

and the diagonal is composed of hps with signs equal to either +1 or ∅,

MHP[sa + k, sb + k] = +1 or ∅.

It is thus a strict and consistent slash diagonal.

• The order of the syntenic tbs in cb is conserved in the reverse order compared to the syntenic tbs in ca
so there is a row [tba,i]i∈[sa,sa+l−1] in ca and a row [tbb,i]i∈[sb−l+1,sb] in cb that verify ∀k ∈ [0, l − 1]

gs+k = LCAg(tba,sa+k, tbb,sb−k)

so
tba,sa+k H tbb,sb−k

and
MHP[sa + k, sb − k] 6= 0.

This corresponds to a strict backslash diagonal in the MHP.

Furthermore, when the tbs [gi]i∈[s,s+l−1] do not evolve from a known to an unknown orientation, the
tbs conserve their orientations within the sb, i.e. relatively to the choice of the order of tbs in the

sb, from gs to gs+l−1. Therefore the orientation of tbb,sb+k relatively to
−−−−−−−−−−→
tbb,sbtbb,sb−l+1 is the same as

the orientations of tba,sa+k relatively to
−−−−−−−−−−−→
tba,satba,sa+l−1.

−−−−−−−−−−−→
tba,satba,sa+l−1 is the same orientation as the

reference orientation of ca but now
−−−−−−−−−−→
tbb,sbtbb,sb−l+1 is the reverse orientation compared to the reference

orientation of cb, thus, when we consider the orientations of tbs on their respective chromosomes,
∀k ∈ [0, l − 1]

o(tba,sa+k) = −o(tbb,sb−k) or ∅
o(tbb,sb−k) = −o(tba,sa+k) or ∅,

so
tba,sa+k • tbb,sb−k = −1 or ∅

and
MHP[sa + k, sb − k] = +1 or ∅.

It is thus a strict and consistent backslash diagonal.

We demonstrated that a strict sb conserved from LCA(Sa, Sb) to Sa and Sb generates a strict and consistent
diagonal in the MHP of a chromosome ca in Ga and a chromosome cb in Gb, either a strict and consistent
slash diagonal or a strict and consistent backslash diagonal.

It may be, in theory, that a strict and consistent diagonal in a MHP does not correspond to a sb if some
tbs, brought in adjacent positions, generate strict and consistent diagonals by chance. However the statistical
validation of PhylDiag ensures that when such a case is highly probable the strict and consistent diagonal is
not considered as a signature of a strict synteny block. That is why we consider that a strict and consistent
diagonal is only a putative strict synteny block. A strict and consistent diagonal is considered as a synteny
block if it passes the statistical validation.
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Figure S4: Provenance of the distinction between slash and backslash diagonals. In the leftmost
MHP, the order of the chromosome cb defines a reference orientation that is in the same orientation as the
orientation of the synteny block. With this order of tbs in the chromosome cb, the synteny block yields a
strict and consistent slash diagonal, that goes up according to a direction from bottom-left to top-right. In
the rightmost MHP, the order of the chromosome cb defines a reference orientation that is in the reverse
orientation compared to the orientation of the synteny block. With this order of tbs in the chromosome cb,
the synteny block yields a strict and consistent backslash diagonal, that goes down according to a direction
from top-left to bottom-right.

5 Algorithm findDiagType

findDiagType sets the diagonal type at the beginning of a strict and consistent diagonal extraction using
the sign of the first hp if the sign is known or using the position of the second hp if their is a second hp. If
two known diagonal types (either slash or backslash) are possible, the slash type is chosen by default. By
convention the algorithm gives an orientation unknown to a single hp not involved in a strict diagonal.

Algorithm 1 findDiagType(MHP, (i, j))

1: inputs
1: MHP: Matrix of Homology Packs
1: (i, j): coordinates of the first hp of a diagonal in MHP
2: if MHP[i, j] 6= ∅ then

3: diagType =

{
slash, if MHP[i, j] = +1

backslash, if MHP[i, j] = −1

4: else
5: if MHP[i+ 1, j + 1] = +1 or ∅ then

//the sign of the next top-right hp is consistent with a slash diagonal
6: diagType← slash
7: else if MHP[i+ 1, j − 1] = −1 or ∅ then

//the sign of next bottom-right hp is consistent with a backslash diagonal
8: diagType← backslash
9: else

10: diagType← unknown
11: return diagType
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Figure S5: Characterisation of a consistent diagonal in the MHP. Two chromosomes, ca of na = 11
tbs and cb of nb = 8 tbs, are compared. The MHP contains nab = 6 hps. During step 2, after the merging
process PhylDiag returns a consistent diagonal of m = 4 hps contained in the window Wab (pink) with a
maximum gap g = 2 tbs reached on ca. The window Wab has a size 6 × 4. The chromosomal windows Wa

(purple) and Wb (green) are the projections of Wab on each chromosome. Wa has a length of la = 6 tbs and
Wb has a length of lb = 4 tbs.

6 Demonstration of the pd formula

Using the reasoning of [2], in a MHP of two chromosomes ca and cb of na and nb tbs without dispersed
paralogy, involving nab hps, the probability of obtaining exactly k hps in a window Wab of size la × lb is:

pd(k, la, lb, nab, na, nb) =



0, if k ≤ min(la, lb, nab)(
nab
k

)
min(la−k,nab−k)∑

i=0

(
nab − k

i

)(
na − nab
la − (k + i)

)(
nb − (k + i)

lb − k

)
(
na
la

)(
nb
lb

) , otherwise

It is easy to demonstrate that pd(1, 1, 1, nab, na, nb) = nab

na×nb
, the density of the MHP. We also have the

extreme case pd(nab, na, nb, nab, na, nb) = 1. The numerator is the number of ways to fill the chromosomal
windows Wa (length la tbs) and Wb (length lb tbs) with tbs from ca and cb in order to obtain exactly k
hps in Wab. The denominator is the total number of ways to fill Wa and Wb with tbs from ca and cb. This
denominator is simply the total number of combinations of la tbs among the na tbs times the total number of

combinations of lb tbs among the nb tbs. The first term of the numerator

(
nab
k

)
corresponds to the number

of ways to choose the k hps of Wab among the total number of nab hps. Once these hps are chosen, it remains
la − k tbs to choose in order to fill Wa. Because there are many ways to choose them, we sum over all the
possible combinations. Each of these may involve a different number of “coloured tbs”, tbs that have a hp

in the MHP (see figure S5). Considering that we choose to put i coloured tbs in Wa,

(
nab − k

i

)
counts

all the possible combinations of i coloured tbs among the nab − k remaining coloured tbs.

(
na − nab
la − (k + i)

)
counts the number of combinations to finish to fill Wa with “grey tbs”, tbs that do not have hps in the MHP

(see figure S5). Finally the last term,

(
nb − (k + i)

lb − k

)
corresponds to the number of ways of choosing the

remaining lb − k tbs in cb in order to fill Wb, while avoiding choosing the i coloured tbs that would generate
a hp in Wab because of the i coloured tbs that we have already placed in Wa. We numerically verified that
pd(k, la, lb, nab, na, nb) = pd(k, lb, la, nab, nb, na).
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7 Calculation of P (sign = s)

Given that a hp has a sign=sign, if we note tba and tbb the two corresponding tbs and o(tb) the orientation
of tb, we have:

P (sign = +1) = P (o(tba) = +1)P (o(tbb) = +1) + P (o(tba) = −1)P (o(tbb) = −1)

P (sign = −1) = P (o(tba) = −1)P (o(tbb) = +1) + P (o(tba) = +1)P (o(tbb) = −1)

P (sign = ∅) = P (o(tba) = ∅)P (o(tbb) = +1) + P (o(tba) = ∅)P (o(tbb) = −1)

+ P (o(tba) = +1)P (o(tbb) = ∅) + P (o(tba) = −1)P (o(tbb) = ∅)

+ P (o(tba) = ∅)P (o(tbb) = ∅)

P (o(tb) = +1), P (o(tb) = −1) and P (o(tb) = ∅) are estimated on ca and cb using the frequencies of the
orientations of tbs in both chromosomes.

8 Demonstration of the po,o formula

The probability that k hps form a consistent diagonal is

po,o(k) =

{
1, if k = 1

pslash(k) + pbackslash(k), otherwise

This probability is equal to the probability to form a consistent slash diagonal or a consistent backslash
diagonal. The case k = 1 allows an extension of the formula to “diagonals” that contain 1 hp. In this case
the intersection of the two probabilities is not null and they cannot be directly summed. In other words, the
fact that a “diagonal” of 1 hp can be both a slash and a backslash diagonal if the hp sign is ∅ is a special
case.

9 Explanation of the pw formula

In a MHP of two chromosomes ca and cb of na and nb tbs without dispersed paralogy, involving nab hps, the
probability that in a window Wab of size la× lb there is at least one consistent diagonal containing at least m
hps spaced by gaps ≤ g is

pw(m, g, la, lb, nab, na, nb) =


0, if m > min(nab, la, lb)
min(nab,la,lb)∑

k=m

pd(k)
k∑

i=m

pg,2D(i, g)po,o(i), otherwise

Only varying parameters are shown in the right-hand side of the equation in the preceding formula. Since
pd(k) ∀k ∈ [m,min(nab, la, lb)] are the probabilities of having exactly k homologies in a window of size la× lb,
we can add these probabilities without removing the probabilities of the intersections. The second sum allows
some hps in Wab to not be involved in a consistent diagonal with gaps ≤ g. If we already know that there is

at least m hps in Wab,
k∑

i=m

pg,2D(i, g)po,o(i) is an upper bound for the probability that there are at least m

hps forming a consistent diagonal with gaps ≤ g in Wab. To be exact we should remove the probabilities of
the intersections while summing probabilities. Indeed, the probability of forming a consistent diagonal of 4
hps and the probability of forming a consistent diagonal of 3 hps are dependent since a consistent diagonal
of 3 hps is a subset of a consistent diagonal of 4 hps. However removing the probability of the intersection
is not trivial and we have therefore chosen an upper bound in order to retain the specificity of the statistical
filtering. It is easy to verify that pw(m = 1, g = 0, la = 1, lb = 1, nab, na, nb) = nab

na×nb
whatever the values of

nab, na and nb.
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10 Explanation of the passage from a window sampling probability
to a whole genome comparison probability

Relying on the reasoning of section 4.2 of [1] we adjust the probability pw, corresponding to a window sampling
scenario, to compute the probability corresponding to a whole genome comparison.

In a MHP of size na × nb containing nab hps without dispersed paralogy (see discussion), the probability
of finding at least one window Wab of size la × lb containing at least one consistent diagonal with gaps ≤ g of
at least m hps can be approximated by:

pV al(m, g, la, lb, nab, na, nb) ' 1− (1− pw)nw (1)

where nw =
nanb
lalb

is the number of windows of width la and height lb in the MHP such that no window overlap

with any other window. Still following the reasoning of [1], this last equation is based on an unwarranted
assumption that finding clusters in the various nw windows are independent events.

It should be noted that a linearisation considering that pw << 1 highlights the missing O(nanb) term:

pV al(m, g, la, lb, nab, na, nb) ' nwpw =
nanb
lalb

pw = O(nanb)pw (2)

11 Numerical applications of the p-value formula

In the example of figure S5, the consistant diagonal in Wab has m = 4 hps, a width la = 6 tbs, a height
lb = 4 tbs and its maximum gap g = 2 tbs is reached on ca. There are nab = 6 hps in the MHP. ca contains
na = 11 tbs, and cb contains nb = 8 tbs. Statistics on the orientations of tbs gives us P (o(tba) = +1) = 4

11 ,
P (o(tba) = −1) = 6

11 , P (o(tba) = ∅) = 1
11 , P (o(tbb) = +1) = 3

8 , P (o(tbb) = −1) = 4
8 and P (o(tbb) = ∅) = 1

8 .
A numerical application gives:

pd(k = 4, la = 6, lb = 4, nab = 6, na = 11, nb = 8) = 9.7× 10−3

pg,2D(k = 4, g = 2, la = 6, lb = 4) = 1.0

po,o(k = 4) = 1.1× 10−2

pw(m = 4, g = 2, la = 6, lb = 4, nab = 6, na = 11, nb = 8) = 1.1× 10−4

pV al(m = 4, g = 2, la = 6, lb = 4, nab = 6, na = 11, nb = 8) = 3.9× 10−4

pg,2D(k = 4, g = 2, la = 6, lb = 4) = 1.0 because any combination of 4 tbs in Wa will create a chain of 4 hps
with gaps ≤ g = 2. The same applies to tbs in Wb. Thus any cluster is guaranteed to possess gaps lower
or equal to 2 in Wab if there is at least 4 hps in Wab. If the cut-off probability α is set to 1× 10−3, since
the p-value of this consistent diagonal is lower, this consistent diagonal is validated as a significant synteny
block. Here it is obvious that for such small diagonal and small chromosomes, accounting for tbs order and
tbs orientations is important for the computation of the p-value.

An example of a more common case would be to compute the p-value of a consistent diagonal which has
m = 3 hps, a width la = 18 tbs, a height lb = 10 tbs and a maximum gap g = 10 tbs. The MHP is characterized
by nab = 400 hps, na = 1750 tbs and nb = 2000 tbs. Usually statistics on genomes give P (o(tba) = +1) = 0.49,
P (o(tba) = −1) = 0.49, P (o(tba) = ∅) = 0.02, P (o(tbb) = +1) = 0.49, P (o(tbb) = −1) = 0.49 and
P (o(tbb) = ∅) = 0.02. This time a numerical application gives:

pd(k = 3, la = 18, lb = 10, nab = 400, na = 1750, nb = 2000) = 8.6× 10−7

pg,2D(k = 3, g = 5, la = 18, lb = 10) = 0.91

po,o(k = 3) = 4.7× 10−2

pw(m = 3, la = 18, lb = 10, nab = 400, na = 1750, nb = 2000) = 3.7× 10−8

pV al(m = 3, la = 18, lb = 10, nab = 400, na = 1750, nb = 2000) = 7.2× 10−4

Here results show that even a consistent diagonal with very long gaps may be considered as a relevant sb with
a cut-off probability α set to 1× 10−3. This is possible because tbs order and orientations are considered
when assessing the statistical relevance of the sb.
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Finally, in a real example, we compare human chromosome Y (hY ) to mouse chromosome Y (mY ), where
PhylDiag, using the CD metric and a gapmax ≥ 5, extracts a consistent diagonal of 3 hps. The maximum gap
in this diagonal is g = 5 and the sb is contained within a window Wab of size 8 × 5. hY contains nhY = 25
tbs and mY contains nmY = 16 tbs. The corresponding MHP contains nhY,mY = 7 hps. Statistics on the
orientations of tbs gives us P (o(tbhY ) = +1) = 0.56, P (o(tbhY ) = −1) = 0.24, P (o(tbhY ) = ∅) = 0.20,
P (o(tbmY ) = +1) = 0.375, P (o(tbmY ) = −1) = 0.50 and P (o(tbmY ) = ∅) = 0.125 This time a numerical
application gives:

pd(k = 3, lhY = 8, lmY = 5, nhY,mY , nhY , nmY ) = 1.3× 10−2

pg,2D(k = 3, g = 5, lhY = 8, lmY = 5) = 1.0

po,o(k = 3) = 9.2× 10−2

pw(m = 3, g = 5, lhY = 8, lmY = 5, nhY,mY , nhY , nmY ) = 1.3× 10−3

pV al(m = 3, g = 5, lhY = 8, lmY = 5, nhY,mY , nhY , nmY ) = 1.3× 10−2

Since the p-value of this consistent diagonal is higher than the cut-off probability α = 1× 10−3, this diagonal
is removed during the statistical validation.

12 Estimation of a recommended maximum gap parameter

As in ColinearScan [3], under the null hypothesis, we assume that homologous tbs are uniformly distributed
in chromosomes and we explore the possibility of finding consistent diagonals with gaps ≤ g containing m
hps by chance. Although this assumption of a uniform distribution is not strictly correct, we consider it to
be reasonable here for the purpose of finding a recommended gapmax. We consider that the probability of
finding consistent diagonals with gaps ≤ g containing m hps can be calculated from an average MHP. The
average MHP has a width na (respectively a height nb) equal to the weighted mean of the distribution of
chromosome lengths of Ga (respectively Gb):

na =
∑

ca∈Ga

wcanca (3)

where wca =
nca∑

ca∈Ga

nca
is the weight given to the length nca (in tbs) of ca. The average MHP is designed in

order to have the same density as the the whole genome comparison of Ga with Gb. The density of the whole
genome comparison is:

θGaGb =
nGaGb

nGanGb

, (4)

where nGaGb
is the total number of hps in the whole genome comparison of Ga with Gb and nGx

is the total
number of tbs in Gx, thus the number of hps in the average MHP is:

nab = na nb × θGaGb, (5)

For many gaps values (g), a numerical computation of pV al(m, g, la, lb, nab, na, nb) with la = lb = (m−1)g+m
are performed. The recommended gapmax value is defined as the lowest gap g that returns a p-value higher
than the target probability Ptarget. m and Ptarget are fixed by the user. Default values are m = 2 and
Ptarget = 0.01. For instance, when comparing the human (Sh) to the mouse (Sm) (Ensembl database v72) we
have: nh = 18560 tbs, nm = 18934 tbs and nhm = 18236 hps. The average MHP is characterised by na = 980,
nb = 1052 and nab = 53. With the default values of m and Ptarget, the recommended maximum gap value is
5.

It should be noted that it is not because we use a gapmax parameter of 5 that we will statistically validate
all consistent diagonals with gaps up to 5. When a consistent diagonal is found it undergoes the statistical
validation that depends on the value of the probability threshold α (default value is 1× 10−3) and also on the
characteristics (density of hps, dimensions, ...) of the MHP of the current pairwise comparison of chromosomes
that may differ from the characteristics of the average MHP. Here is an example. Still in the comparison of
the human genome with the mouse genome, we consider the comparison of the human X chromosome (chX)
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with the mouse X chromosome (cmX). In the MHP of this comparison, PhylDiag (using the recommended
gapmax = 5) finds a consistent diagonal of 2 hps characterized by a maximum gap g = 3 and a window Wab

of size 3 × 5. Given that nhX = 735 is the number of tbs in chX and nmX = 726 is the number of tbs in
cmX and nhX,mX = 690 is the number of hps involved in the comparison of chX with cmX , the p-value of the
putative synteny block is pV al(2, 3, 3, 5, nhX,mX , nhX , nmX) = 0.63. Since this p-value is > α = 1× 10−3 the

putative synteny block is rejected. This is not surprising since
nhX,mX

nhXnmX
= 1.3× 10−3 >>

nh,m

nh nm
= 5.1× 10−5.

13 Simulator

Our simulator first designs an ancestral genome Ganc with a user defined number of genes and chromosomes.
The length of chromosomes in Ganc are expressed in number of genes, and are determined randomly. Simu-
lated evolution gives rise to the two extant genomes Ga and Gb of two extant species. The simulator performs
genic events, which include de novo gene births, deletions, duplications (either tandem or dispersed), and ge-
nomic rearrangements, which include chromosome fusions and fissions, segmental translocations or segmental
inversions.

Inversions and translocations involve a chromosomal segment. Each time a translocation or an inversion
occurs, a chromosome is chosen with a frequency that depends on its length (i.e. the longer a chromosome,
the higher the chance that it will be chosen). The length of the rearranged segment is chosen as a proportion
of the chromosome length in a density function represented on figure S6 obtained from a modification of the
von Mises probability distribution. If it is a translocation, the insertion position is chosen with a uniform

Figure S6: Theoretical distribution of the lengths of rearranged chromosomal segments. The
length of a rearranged chromosomal segment is calculated as a proportion of the length of the departure
chromosome. For each proportion of the length on the X-Axis, the black curve represents the probability
density of choosing a segment of this length. The left Y-axis reports values of the probability density. The
doted line represents the cumulated probability, and its value is reported on the right Y-axis.

probability on all possible insertion positions. A full description of the simulator will be published elsewhere
(Muffato et al. in preparation).

The evolutionary scenario is calibrated so as to fit the known evolution of the human and the mouse
genome from the Euarchontoglire genome (Ganc). Based on phylogenetic gene tree reconstructions from
Ensembl Compara version 72, the Euarchontoglire genome possessed at least 21806 genes that evolved during
approximately 90 million years into the human genome on the one hand and into the mouse genome on the
other hand. In each simulation, the ancestral Euarchontoglire genome is populated with the same 21806
genes distributed into 20 chromosomes, but in a different random order. The extant human genome contains
20172 genes and the mouse genome contains 22542 genes. According to the forest of gene trees stemming
from Euarchontoglire, 3836 gene deletions, 821 de novo gene births, 1381 gene duplications with 791 tandem
duplications (57%) and 590 dispersed duplications took place in the human lineage. Similarly, 4060 gene
deletions, 1658 de novo gene births and 3138 gene duplications with 1950 tandem duplications (62%) and
1188 dispersed duplications took place in the mouse lineage. We calibrated the rates of rearrangements on
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each branch, starting from known rates [4] and optimised to visually reproduce the distribution of genes
between the real mouse and human genomes (table S1 and figure S7). Of note, we aim here at simulating the
evolution of the human and mouse genome in a reasonably realistic way. A proper modelling of this process
is out of the scope of this study, so long as simulated data make it possible to compare different methods to
identify synteny blocks.

Rates E → H E → M

Duplication 15 35
Tandem Dup 60% 60%
Deletion 43 45
Apparition 9 18

Inversion 0.8 2.6
Translocation 0.22 0.48
Fusion 0.26 0.26
Fission 0.26 0.26

Table S1: Rates of the different events on each of the two branches. Rates are in number of events
per million years. E → H is the branch from Euarchontoglire to Human and E → M is the branch from
Euarchontoglire to Mouse. Each branch lasts 90 million years. “Tandem Dup” is the proportion of tandem
duplications among duplications.
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Figure S7: Homology matrices of whole genome comparisons, with real genomes and simulated
genomes.

14 Influence of genic events and chromosomal rearrangements on
the MHP and comparison between the DPD and the MD

Figure S8 shows how different events disturb or not the linearity of synteny blocks. Based on figure S8, since
merging diagonals with the DPD metric attributes more importance to linearity, chosing the DPD metric
will allow more small inversions within sbs gaps while considering that genic/segmental indels and wrong
annotations break the synteny more easily than with the MD metric. Conversely, merging diagonals with
the MD metric gives priority to lateral directions and this allows more small genic/segmental indels and
annotation errors within sbs gaps and considers that inversions break the synteny more easily than with the
DPD metric.
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(d) segmental insertion
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(f) segmental inversion
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Figure S8: Examples of evolutionary scenarios of a synteny block. Inversion events create a gap in
the sb and do not change the linearity of the sb, whereas gene indels, segmental indels and annotation errors
affect the linearity of the sb.

List of abbreviations used

Acronyms

sb (plural sbs) Synteny Block
CAR Contiguous Ancestral Region
tb (plural tbs) Tandem Block
hp (plural hps) Homology Pack
MH Matrix of Homologies
MHP Matrix of Homology Packs
ED Euclidean Distance metric
CD Chebyshev Distance metric
MD Manhattan Distance metric
DPD Diagonal Pseudo Distance metric
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Vocabulary

synteny block (sb) an ordered sequence of close oriented genes that is conserved in several species
gene specific to one lineage a gene that did not exist in the ancestor and that appeared along a lineage from

the ancestor to one extant species
tandem block (tb) a contiguous sequence of tandem duplicates
homology pack (hp) a pack of homologies corresponding to a homology between two tandem blocks
sign of a hp a value that indicates whether or not the two corresponding homologous tandem

blocks are in the same orientation, the opposite orientation or if at least one
tandem block has an unknown orientation

gap between two tbs the number of tbs between them
distance between two tbs the gap between them minus one
distance metric a metric that is used to calculate a distance between two points in a 2D array
distance between two hps given a distance metric, the distance between the two points corresponding to the

two hps in the MHP
gap between two hps the distance between them plus one
chain a set of tbs spaced by gaps ≤ gapmax

cluster a set of hps spaced by gaps ≤ gapmax

diagonal a diagonal of hps in a MH or a MHP, it may be interpreted as a cluster with a
constraint on gene order and gene orientations

strict diagonal a diagonal of hps with no gaps between hps
slash diagonal a type of diagonal that goes from bottom-left to top-right
backslash diagonal a type of diagonal that goes from top-left to bottom-right
consistent diagonal a diagonal of hps with signs consistent with the diagonal type
putative synteny block a consistent diagonal that may be a synteny block if it passes the statistical vali-

dation
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Notations

Sa a Species
CA(Sa, Sb) a Common Ancestor of Sa and Sb

LCA(Sa, Sb) the Last Common Ancestor of Sa and Sb

Ga the Genome of Sa

ca a Chromosome of Ga

g an instance of Gene
ga an oriented gene of Ga

Na number of genes in ca
tb an instance of Tandem Block
tba an oriented tb of Ga

na number of tbs in ca
ca[is → ie] sub-list of ca that goes from the is

th index to the ie
th index of the chromosome ca

o(tb) orientation of tb relatively to the reference orientation of the chromosome containing
tb, either +1,−1 or ∅

∅ null value or unknown value
tba,i • tbb,j comparison of the orientation of the ith tb of the chromosome ca with the orientation

of the jth tb of the chromosome cb
xH y x is in a homology relation with y
Nab number of homologies in the MH of the two chromosomes ca and cb
hp an instance of Homology Pack
nab number of hps in the MHP of the two chromosomes ca and cb
θcacb the density of the comparison of the two chromosomes ca and cb
θGaGb

the density of the whole genome comparison of the two genomes Ga and Gb

s(hp) sign of hp, either +1, −1 or ∅
dDM((x1, y1), (x2, y2)) distance between the point (x1, y1) and the point (x2, y2) using the distance metric DM
LCAg(tba, tbb) the Last Common Ancestral Gene of tba and tbb
Mrows,cols set of matrices of size rows× cols
M[i, j] element of the ith row and the jth column of the matrix M
M [is → ie, js → je] sub-matrix of M that goes from the is

th row to the ie
th row and from the js

th column
to the je

th column
sb an instance of Synteny Block
na number of tbs on the ca chromosome of the average MHP
nab number of hps in the average MHP
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